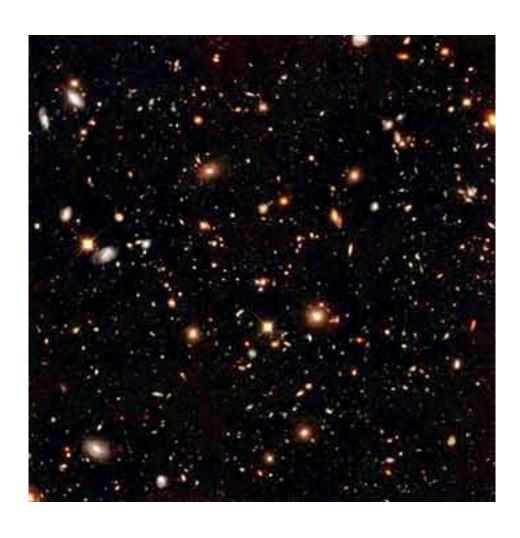
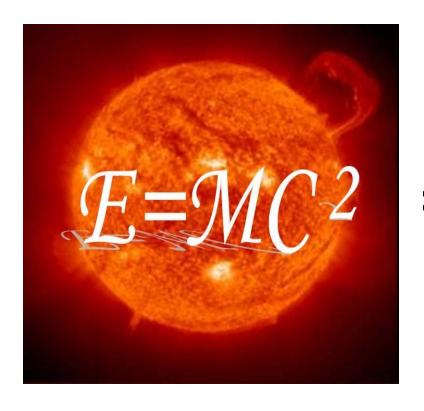


What your Mother .er .Advisor Never Told You: The Need for Entrepreneurship Education

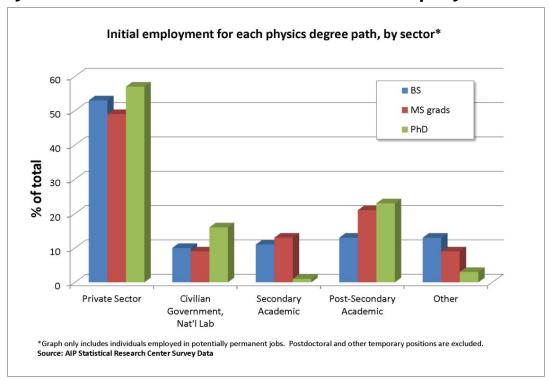

Douglas N. Arion, PhD

Donald Hedberg Distinguished Professor of Entrepreneurial Studies
Director, ScienceWorks Entrepreneurial Studies Program
Professor of Physics and Astronomy
Carthage College

Why we 'do' physics



Doing Physics is NOT being a "Physicist"*


* Also true for *Every* field of study (Oh, and what *IS* a physicist, anyway?)

Since

Most physics students won't become 'physicists'

... and especially, not faculty! (less than 3%)

But

Physicists can do (nearly) anything!!

(That's how we sell physics to students...)

Your Experience

- What skills and knowledge do you wish you had before you started your professional career?
 - Aren't those skills universal... applicable to any career?
- What was it like to learn 'on the job'?
- Is the school of 'hard knocks' the best way to prepare for the future?

Two Areas Need Attention

- Career Development
 - Give everyone the skills/knowledge/attitudes needed for success
- Opportunity Recognition
 - Leverage all of the steps in physics research to create/improve products and services

Getting Ready for the *REAL*WORLD

- College classes (typically) teach knowledge and skills in physics
- Success in the Real World requires other skills, such as:
 - Dealing with People
 - Dealing with Money
 - Dealing with Legal/Regulatory/Political issues
- All careers require these skills
 - Faculty may say otherwise....but everything is a business
 - Whether starting a venture or taking a position these skills are critical for success

What Else Should be Learned?

- Knowledge
 - Business communications
 - Intellectual property
 - Business structures and cultures
 - Incorporation
 - Finance
 - Taxes
 - Legal Regulation
 - Bids and Proposals
 - Contracts
 - Purchasing and Property
 - Dress and Appearance

- Skills
 - Writing
 - Speaking
 - Listening
 - People Management and Teamwork
- Attitudes
 - Entrepreneurial Mindset!
 - Innovation and Commercialization

Where is this Happening Now?

- Primarily in Engineering Programs
 - Freshman and Senior Design courses now typically include entrepreneurship
 - Career skills built into ABET standards
- Joint programs between Engineering schools and Business schools
 - Typically on 'large' campuses
 - Often graduate programs
- Supporting organizations: ASEE and NCIIA (More on this later...)

What is Available for The 'General' Population?

- 'Bridge' Programs
 - Tuck Business Bridge Program
 - MiddCORE Program at Middlebury College
- MBA Programs
 - Entrepreneurship concentrations are now common
 - Technical content added to MBAs
 - Example: Lab to Market program at Univ. of Maryland
- Business Majors and Minors
 - What some parents see as the 'right answer'

What is Being Done in Physics?

- Undergraduate entrepreneurship programs
 - Carthage ScienceWorks program
 - UC-Denver innovation program (Randall Tagg)
- Professional Master's Degrees
 - Case Western Reserve University started the paradigm
 - 14 Programs around the US

One Example: *ScienceWorks* at Carthage

ScienceWorks at Carthage

Courses (Aimed at Juniors)

Supporting Coursework

ESNS 310/320:
Core Business Content
ESNS 325 (J-Term)
Commercial Technologies
[Total: 8 Credit Hours]

Accounting/Finance/Marketing
Ethics
GIS
Public Speaking
[4 Credit Hours]

Senior-Level Business Plan Courses

ESNS 410/430

Full-fledged Business Plan

- New Product
- New Business/Spinoff
- SBIR/IR&D Proposal

Defended before Advisory Board of Experts [Total 8 Credit Hours]

- Goals and Plans
- Technology/Innovation
- Writing/Correspondence
- Entrepreneurs/characteristics
- Marketing Principals
- Product Lifecycle
- Project Management
- Financial Needs
- Marketing and Sales
- Searching for Business Info.
- Speaking/Presentations
- Information Systems
- Web Design/Social Media
- Economics
- Budgeting: Personal and Business
- Business Plans
- Stocks and Bonds

- Investing/Retirement
- Resumes and Interviewing
- Creativity and Ideation
- Business Models
- Incorporation and Business Organization
- Management and Team Skills
- Intellectual Property
- Accounting and Financial Management
- International Business and Cultures
- Legal and Regulatory
- Geographic Information Systems
- Finance and Funding
- Taxes
- Bankruptcy
- Ethics
- Bid and Proposal
- Contracts/Subcontracts/Purchasing
- Insurance/Risk Reduction

Does this Work?

- ScienceWorks has helped Carthage science students succeed
 - Jason Benes: \$1.1M Royalties from Nike
 - Matija Maretic: Marvelsoft Paris, London, Zurich –
 Million dollar deals
 - Liz Zona: Abbott Labs
 - Brian Jones: Medical administration executive
 - Chris Duffy: Epic Systems
 - Melissa Lowe: Ortho McNeill
 - Keith Kobelt: Marsh and McClennan finance
 - Charlie Staniger: Walgreen's management

Assessment Results

- Carthage ScienceWorks graduates are the most successful produced by the college
- More rapidly hired
- More rapid promoted
- More accepted into graduate schools
- More highly rated by employers and advisers

Ancillary Benefits

- Recruiting!!
 - Prospective students are more interested in physics if career preparation included
 - PARENTS are particularly positive
- Alumni engagement
 - More successful alumni reflect back and contribute to department success
- Competition
 - Physics viewed as a career path like (or even better) than engineering

Other Modalities

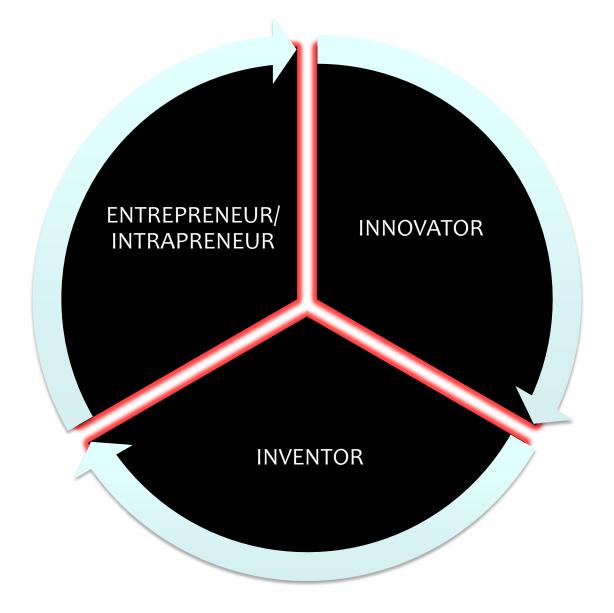
Too big a mouthful?

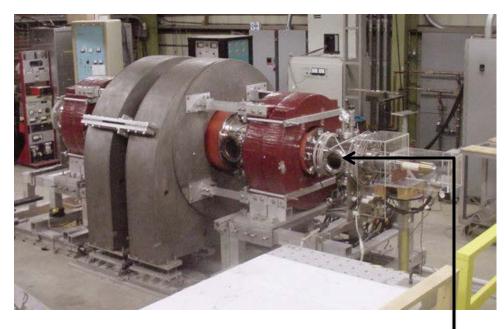
- Speaker Series
- Guest lecturers
- In-course projects/content
 - Innovation projects
- Visiting businesspersons ('Entrepreneur in Residence')
- Interdisciplinary courses and projects (cross-department)
- Industrial internships

Building the Skill Set

- Hire 'Professors of Practice'
 - Started by UT-Austin as a staffing model
- Take advantage of National Collegiate Inventors and Innovators Alliance meetings and resources/publications
 - Large body of information, curriculum, documentation, roadmaps, etc., already available
 - A great community looking to work together
- Engage alumni, regional businesses, economic development organizations

Innovation in Physics





Where could ideas come from?

- Every step in the research process could result in innovation
- Research has an end goal in mind
 - But the innovation may be an intermediary step

What Needs to Happen? A Shift in Mindset

- How could my research have commercial value?
 - Directly or Indirectly?
- Can I recognize opportunities?
- Can I answer 'Who needs it?'
- Do I document/record information to allow me to protect my ideas?
- Can I develop partnerships and linkages to bring products and processes to market?

What Can Be Done?

- Step One: Implement innovation as an attitude
 - In research
 - In teaching and education
- Step Two: Look at every step in the process as an opportunity to develop viable products or services
 - Take appropriate IP precautions
- Step Four: Seek out expertise!
 - There is a community of entrepreneurial faculty and national organizations
- Step Five: Promote student creativity at all levels
 - Young creativity is Powerful
- Finance, inventory control, order tracking it's all just data!

Implications for the Academy

- Changes needed in goals/outcomes/assessments
 - What is the right set of assessable outcomes for students and faculty?
 - Do 'traditional' curricular structures achieve these goals?
 - Do 'traditional' delivery methods work in this environment?
- A shift in the traditional research process
 - Grant supported research with other than 'predictable' outcomes
- Changes in academic IP policies
 - Technology Transfer offices can be a help or hindrance

Resources: You are not alone

- National Collegiate Inventors and Innovators Alliance (www.nciia.org)
 - Technology entrepreneurship and innovation
 - Come to the meeting in three weeks!
- General entrepreneurship organizations:
 - Collegiate Entrepreneurs Organization (CEO)
 - United States Association of Small Business and Entrepreneurship (USASBE)
- Engineering Education:
 - American Society for Entrepreneurship Education (ASEE)

Join the Crowd

- Conferences in 2014 on Entrepreneurship in Physics:
 - Reinventing the Physicist (sponsored by APS)
 - College Park, MD, June 2014
 - AIP/ACTP Industrial Physics Forum
 - Sao Paolo, Brazil, Sept. 28- Oct. 3, 2014
- Note the National Collegiate inventors and Innovators
 Alliance Annual meeting March, 2015, Washington, DC